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Axisymmetric vortex breakdown. Part 3 
Onset of periodic flow and chaotic advection 
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Australia 

(Received 26 March 1991 and in revised form 1 July 1991) 

When the fluid inside a completely filled cylinder is set in motion by the rotation of 
one endwall, steady and unsteady axisymmetric vortex breakdown is possible. 
Nonlinear dynamical systems theory is used to describe the changing kinematics of 
the flow as the speed of the rotating endwall is increased. Two distinct modes of 
oscillation have been found in the unsteady regime and the chaotic advection caused 
by the oscillations has been investigated. The results of this study are used to 
describe the filling and emptying processes of the vortex breakdown bubbles 
observed in flow visualization experiments. 

1. Introduction 
Complex fluid motions may result when the fluid inside a completely filled cylinder 

is driven by the constant rotation of the bottom endwall. At  low rotation rates the 
flow is steady and axisymmetric vortex breakdown is possible. This regime has been 
explored experimentally (Vogel 1968 ; Escudier 1984), as well as numerically (Lugt 
& Abboud 1987; Lopez 1988, 1990) and the dynamics of the steady flow is 
understood (Brown & Lopez 1990). Vortex breakdown in the cylinder flow is a result 
of the production of an azimuthal component of vorticity which induces a reversed 
flow on the axis and hence, by continuity, a local divergence of the streamtubes in 
the neighbourhood of the reversed axial flow. This is produced by the tilting and 
stretching of the vorticity vector which consists primarily of an axial component 
due to the swirling motion and an azimuthal component due to the meridional 
circulation. In general, the velocity vector will not be aligned with or perpendicular 
to the vorticity vector. If the ratio of the helix angle of the velocity vector to that 
of the vorticity vector is greater than one (the helix angle of a vector is the ratio of 
its azimuthal and axial components), then, as shown in Brown & Lopez (1990), the 
tilting and stretching of vorticity leads to the production of an azimuthal component 
of vorticity inducing a reversed axial flow, i.e. the vortex breakdown of the central 
vortex. 

In certain regions of parameter space, the flow inside the cylinder is unsteady. Two 
distinct modes of periodic oscillation have been identified. One consists of two regions 
enclosed by separatrices of the instantaneous streamline pattern, periodically 
coalescing and separating. The other consists of a wave travelling axially from top 
to bottom each period. This picture of the instantaneous streamlines is markedly 
different from flow visualizations of dyelines. Flow visualizations, consisting of 
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dyelines (which approximate streaklines very well when the properties of the dye are 
not too different from those of the fluid), show the formation of long thin ‘fingers’ 
entering and leaving the ‘bubble ’ regions. 

The marked difference between the Eulerian viewpoint (from the instantaneous 
streamlines) and the Lagrangian viewpoint (from the streaklines) in unsteady flows 
is well known (Hama 1962; Stuart, Pankhurst & Bryer 1963), and yet interpretation 
of flow visualizations of unsteady flows are often confused and occasionally incorrect. 
Neitzel (1988) has shown numerically how in the unsteady axisymmetric swirling 
flow inside a cylinder driven by a rotating endwall, a streakline released near the axis 
can give the visual impression of a non-axisymmetric flow. 

Here the periodic flow is examined from both an Eulerian and Lagrangian point 
of view. The Lagrangian viewpoint is found to be particularly enlightening. The 
particle equations projected onto a meridional plane are shown to be Hamiltonian 
and use is made of Hamiltonian dynamical systems theory to describe in detail the 
complicated fluid motions, in particular the filling and emptying processes of the 
vortex breakdown ‘bubbles ’. 

A typical sequence of bifurcations in the topology of the steady and unsteady flows 
is described. The only reported experimental results in the unsteady regime are those 
of Escudier (1984), but that report gives very little detail of the unsteady flow. A 
number of numerical investigations have included the unsteady regime (Lopez 1989 ; 
Daube & Sorensen 1989)’ but the results from these investigations were presented in 
terms of an Eulerian description. 

The use of dynamical systems theory to  describe the fluid motions for swirling 
flows undergoing unsteady vortex breakdown is not new. Holmes (1984) outlined the 
potential of such an application. He envisaged a bifurcation of the steady 
axisymmetric flow resulting from non-axisymmetric, time-periodic perturbations 
leading to chaotic streaklines in the vortex breakdown flow which, he expected, 
would account for the complex fluid motions observed experimentally by Faler & 
Leibovich (1977). 

Rather than perturbing the steady flow by some external forcing, the Navier- 
Stokes equations are solved here for a swirling flow which is allowed to undergo 
a transition to a periodic state as the Reynolds number is increased. Next, a Poincark 
mapping is defined for this flow and its topology (i.e. the Lagrangian representation 
of the flow) is analysed. Further, changes in the topology are related to changes in 
the Eulerian representation. This is an enlightening analysis which is not often 
performed, particularly in view of the fact that the transitions are not externally 
forced. Many of the ideas proposed by Holmes (1984) are found in this study of 
swirling flow undergoing vortex breakdown. The main difference between Holmes’ 
scenario and that found in the cylinder flow is that  the periodic flow is axisymmetric, 
as shown experimentally by Escudier (1984), whereas in Holmes’ scenario, the 
bifurcation to periodic flow was associated with symmetry breaking as well. 
However, his prediction of the fluid motion in the ‘bubble’ of a vortex breakdown, 
with thin ‘fingers’ (lobes) originating upstream being ‘entrained ’ into the interior of 
the ‘bubble ’, where they circulate a t  least once, and similarly fluid originating inside 
the ‘bubble ’ leaving the ‘bubble ’, is the type of motion found in the cylinder flow. 
Most of the dynamical systems theory concepts and ideas used here can be found in 
Guckenheimer & Holmes (1986) and the theory of the lobe dynamics is given in a 
recent article by Rom-Kedar & Wiggins (1990). Lichtenberg & Lieberman (1983), 
Wiggins (1988, 1990) and Ottino (1989) also provide good introductions to the 
subject. 
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FIGURE 1. A schematic of the cylinder flow showing the intersection of a streaksheet 
with a meridional plane. 

2. Swirling flow in an enclosed cylinder 
Consider a circular cylinder, of radius R and height H ,  completely filled with an 

incompressible fluid of constant kinematic viscosity, v. At time t = 0 ,  when the fluid 
and the cylinder are at rest, the bottom endwall is impulsively set to rotate at a 
constant angular speed Q. This flow, fist investigated experimentally by Vogel 
(1968) and later by Ronnenberg (1977) and Escudier (1984), is completely specified 
by two non-dimensional parameters. These are the aspect ratio of the cylinder H / R ,  
and the rotational Reynolds number Re = sZR2/v. 

When the bottom endwall is impulsively started, a thin Ekman boundary layer 
(with constant thickness of order Re-;) is formed which centrifuges fluid outwards 
while drawing fluid in from above to maintain continuity. The expelled fluid then 
spirals up the sidewall, forming another boundary layer from which a portion of the 
angular momentum and total head acquired in the Ekman layer is transferred to the 
interior flow through the action of viscous stresses. This sidewall boundary layer is 
deflected at the upper endwall and an upper endwall boundary layer is formed. The 
endwall boundary layer separates at  r = 0, forming a central vortex which returns 
fluid back towards the Ekman boundary layer. The central vortex, whose structure 
is primarily determined by the structure of the stationary endwall boundary layer, 
is broad and diffuse for Re < 1000. At these low Reynolds numbers, the central 
vortex is essentially cylindrical and its associated vorticity vector is primarily 
directed in the axial direction, with a relatively small azimuthal component due to 
the meridional circulation. In a region of (Re,H/R) parameter space, this central 
vortex undergoes vortex breakdown, as detailed in Lopez (1990) and Brown & Lopez 
(1990). A schematic of the flow is shown in figure 1. 

The details of the computational technique used to calculate the flow field are 
given in Lopez (1990). The axisymmetric form of the Navier-Stokes equations is 
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integrated using a time-accurate finite-difference technique. The restriction to axial 
symmetry is supported by Escudier's (1984) experiments where the periodic flow 
remained axisymmetric. 

3. A dynamical systems representation of the flow 
A simple Lagrangian representation of the flow can be obtained by exploiting its 

axial symmetry and temporal periodicity (at least in the region of parameter space 
being considered). 

3.1. Axisymmetric particle equations 

The particle equations for incompressible two-dimensional planar flow are Ham- 
iltonian. The particle equations for incompressible axisymmetric flow can also be 
cast as a Hamiltonian system. 

In an axisymmetric flow, an axially centred circular ring of fluid remains axially 
centred and circular as it evolves in time. The only effect of swirl (i.e. non-zero 
azimuthal component of velocity) is to  rotate the ring about the axis of symmetry. 
Rather than following the motion of particles in three dimensions, it is sufficient to 
study the motion of ring intersection points in an arbitrary meridional plane ( r ,  z ) ,  
where ( r ,  8, 2) are the usual cylindrical coordinates. If (u, w, w) is the corresponding 
velocity field, then 

describes the motion of the intersection point, where y? is the Stokes stream function. 
By the coordinate 

which constitutes 
steady the system 

transformation p = $rZ (Benjamin 1962), the system (1) becomes 

a Hamiltonian system of one degree of freedom. If the flaw is 
(2) is also autonomous. In  the unsteady (non-autonomous) case, 

chaotic solutions to  (2) are possible. The velocity field @-,i) is divergence free and 
hence area preserving in the canonical ( p , z )  phase space. 

3.2.  The Poincare' map 

For a periodic flow 
$(r,  z ,  t )  = $(r ,  z ,  t + T ) ,  (3) 

where T is the period of the flow. Equation (3) is also true in the steady case, the value 
of T being arbitrary. The periodicity is exploited by defining a Poincare' map:  

(r(t0L z( t0) ) -  ( r ( to+T) ,  z ( to+7) ) .  (4) 
Put  simply, the Poincar6 map maps the position of ring intersection points in ( r ,  2 ) -  

space a t  time to to  their location one period later. The image of a point x under 
n applications of the map is denoted by F"(x) .  The point mapped to x under n 
applications of the map is denoted F-"(x)  and is well defined since the map is 
invertible. A point x, such that F ( x )  = x, is aJixed point of the Poincar6 map. All 
possible maps can be obtained by choosing 0 d to < T and the topology of the map 
is independent of the choice made. 

A streaksheet is obtained when dye is continuously released from a circular ring 
centred on the axis of symmetry. The intersection of a streaksheet with an arbitrary 
meridional plane defines a line in ( r ,  2)-space. These lines behave like streaklines in 
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a planar two-dimensional flow and henceforth shall be called streaklines. These 
streaklines are revealed in flow visualization experiments, e.g. Escudier (1984), when 
dye is injected at r = 0, 2 = H and a meridional plane is illuminated by a laser sheet. 
A physical interpretation of the Poincard map is sometimes given in terms of 
streakline patterns. To make the connection between these streaklines and the map 
precise the definition of these streaklines is extended. Usually, a streakline represents 
the positions of particles released from a particular point at  some past time. Here, 
streaklines represent the positions of intersection points of rings rather than the 
positions of particles. Let these streaklines also include the intersection points of 
rings which will occupy the release position a t  some future time. This ‘backwards’ 
part of the streakline can be imagined as the line obtained when dye is released in a 
time-reversed version of the flow. Streaklines so defined are infinitely long in both 
directions (except in special cases, e.g. when they terminate or originate at fixed 
points) and when sampled at  the phase of the Poincard map, are invariant curves of 
the Poincard map, i.e. they map to themselves. A point on a streakline is always 
mapped to another point on the same streakline. A streakline pattern is a ‘phase 
portrait’ of the Poincard map. 

If the Poincar6 map is defined for (21, 2)-space rather than ( r ,  2)-space it is also area 
preserving. This is particularly relevant when considering lobe dynamics (Rom- 
Kedar & Wiggins 1990 ; Rom-Kedar, Leonard & Wiggins 1990). An element of area 
in ( p ,  2)-space is 6p 62 = r 6r 62 and the volume of a torus of cross-sectional area 6r Sz 
in ( r ,  0, 2)-space is 2xr 6r 62. Hence, while the Poincard map in ( r ,  2)-space is not area 
preserving ; it is volume preserving when considered as a meridional cross-section of 
a toroidal volume. 

4. RBsum6 of the steady flow 
The steady flows described in Lopez (1990) for H/R = 2.5 are briefly reviewed with 

emphasis placed on the development of the topology as Re is increased. This leads 
naturally into the unsteady regime and an analysis of the kinematics of the periodic 
flow. 

4.1. Topology of the steady flow 
In steady flow streamlines, streaklines and particle paths coincide and are invariant 
curves of the Poincard map. The fixed points of the Poincard map can be classified 
according to their stability. For a two-dimensional area-preserving map the only 
possible fixed points are hyperbolic (unstable) and elliptic (Liapunov stable), apart 
from the degenerate parabolic fixed points on the rigid boundaries. A rule relating the 
number of saddles and centres in instantaneous streamline patterns can be easily 
derived using the Poincar6-Bendixson (or ‘hairy sphere ’) theorem (Davey 1971 ; 
Hunt et al. 1978). For the meridional flow the number of saddles must equal the 
number of centres. A saddle on the r = 0 axis or no-slip boundary counts as half a 
saddle and each corner counts as a quarter. An heuristic derivation of a similar rule 
for fixed points of the Poincare map is presented in the Appendix. 

Let the position of a particle which moves on a closed orbit in ( r ,  8,z)-space be called 
a periodic point of theJlow. Let the order of such a point be the number of orbits about 
the r = 0 axis it takes the particle to return to its starting position. It is worthwhile 
noting when a fixed point of the Poincard map is not a periodic point of the unsteady 
flow. All fixed points on the r = 0 axis are obviously periodic points of the flow. 
However, a particle placed at  a fixed point off the axis, located at  (rl, el, zl), will end 
up at location (rl, 0,, zl) after one period of the periodic flow. If (0, -Ol)/n is rational, 



454 J .  M .  Lopez and A .  D .  Perry 
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FIGURE 2. Details of the stream function at steady state (0 < r < AR) for HIR = 2.5 and 
Re as indicated (n, = 61, n, = 151 and 6t = 0.05). 

then the fixed point of the map is also a periodic point of the flow (possibly of high 
order); but if (O,-O,)/n is not rational, then the point is not a periodic point of the 
flow of any order. 

For the steady swirling flow, the only fixed points of the map which correspond to 
particles which never move in ( r ,  0, 2)-space, are the stagnation points on the axis of 
symmetry and of course, the stationary boundaries. All other hyperbolic and elliptic 
fixed points occur off the axis where the azimuthal velocity is non-zero and hence are 
periodic points of the steady flow. The time taken to complete one orbit is determined 
by the local azimuthal velocity. 

The development with increasing Re of the steady flow’s topology in the central 
region (i.e. r < f$) is shown in figure 2 for H / R  = 2.5. As mentioned above, for these 
steady flows the level curves of the stream function give a phase portrait of the 
Poincar6 map, of which they are invariant curves. For Re < 1918, the only fixed 
point of the map is elliptic, corresponding to the centre due to the meridional 
circulation (it is not shown in figure 2 as it lies a t  r > &B). Note that owing to the 
axial symmetry, the flow only needs to be considered in the half-plane r 3 0,O = Bo, 
although the plane O = O0+n is included in the figures. For Re 2 1918, the central 



Axisymmetric vortex breakdown. Part 3 455 

FIGURE 3. Schematics of two topologies occurring in the steady regime of the vortex- 
breakdown flow. 

2 
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Time 
FIGURE 4. Time history of the stream function at the point r = iR, z = $H for H/R = 2.5 and 

Re as indicated (one time unit is one rotation of the bottom endwall). 

core develops a series of stagnation points resulting from its vortex breakdown. 
Details of this process and the physical mechanisms involved are given in Lopez 
(1990) and Brown & Lopez (1990). 

For 1918 < R e  < 2300, the topology of the Poincark map consists of four 
hyperbolic fixed points (stagnation points) on the axis and three elliptic fixed points 
(centres) off the axis. Figure 3(a)  is a schematic of this. There are four special 
invariant curves originating or terminating a t  each hyperbolic fixed point. In the 
terminology of dynamical systems, these are the stable and unstable manifolds. Points 
on the two stable manifolds, W s ,  asymptote towards the fixed point under repeated 
applications of the map. Points on the two unstable manifolds, W", asymptote 
towards the fixed point under repeated applications of the inverse map. In steady 
flow, a separatrix connecting the two hyperbolic fixed points on the axis, corres- 
ponding to the two stagnation points of the flow, is an unstable manifold for 
one and a stable manifold for the other. When the separatrix connects two different 
hyperbolic fixed points, the orbit is heteroclinic and when the separatrix connects a 
hyperbolic fixed point to itself the orbit is homoclinic. Stable manifolds cannot 
intersect themselves or each other. The same is true for unstable manifolds. 
However, stable manifolds can intersect unstable manifolds when the flow is 
unsteady. In this range of Re, where the flow is steady, there are three distinct regions 
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of the phase portrait. These regions are separated by the stable and unstable 
manifolds, which coincide for steady flows, between which there is no transport. The 
two regions enclosing the elliptic points C ,  and C ,  (see figure 3 a )  are commonly 
referred to as vortex breakdown bubbles. 

As shown in figure 2, a t  a Reynolds number in the range 2300-2400, the two 
bubbles coalesce and there is a bifurcation in the topology of the flow. The two 
hyperbolic fixed points P, and P, (figure 3a) on the axis are replaced by a single 
hyperbolic fixed point S ,  off the axis, which has a double homoclinic orbit associated 
with it enclosing the two elliptic fixed points C, and C, (figure 3 b ) .  The fixed points 
P,, P,, P, and P4 in figure 3(a)  are also fixed points of the flow (i.e. stagnation points), 
however, the fixed point S,  in figure 3(b) is a periodic point of the flow, its period 
being determined by the azimuthal velocity a t  that point. The two separate 
heteroclinic orbits of figure 3 (a )  are replaced by a single heteroclinic orbit between 
Pl and P4. It is clear from figure 2 that a t  Re = 2500 the homoclinic and heteroclinic 
orbits are extremely close. 

4.2. Flow transients 
Figure 4 shows the time history of the stream function at  the point r = iR, z = $H for 
H/R = 2.5 and for a series of Re covering the bifurcation depicted in figure 3. When 
the steady-state flow has two distinct bubbles placed well apart, the transient 
oscillation resulting from the impulsive start is damped out after 500-1000 endwall 
rotations (the non-dimensional unit of time used is one rotation of the bottom 
endwall). For flows closer to the bifurcation point (ix. 2300 <Re < 2400) the 
transient oscillation still damps out in approximately the same time. Lopez (1989) 
examined the power spectra of these time series and found a new mode of oscillation 
appearing after approximately 500 endwall rotations. The transient oscillation with 
frequency f,, w 0.0175, was found to be independent of Reynolds number. The new 
frequency fl w 0.0278, is approximately independent of Re over the Re range in 
which it is present. The instantaneous streamline pattern oscillates with frequency 
fi between the topology of figure 3 ( a )  and figure 3 ( b )  before settling on one of the two. 

For Re < 2600 this f, oscillation is also damped and the flows settle down to steady 
state. Note that in figure 4 the time series for Re = 2600 has not settled down to a 
steady state although the oscillations are damped. The calculations in figure 4 
correspond to  a grid size of 61 radial nodes (n,) and 151 axial nodes (n,) with a time 
step (6t) of 0.05. The Re = 2600 case (and all the cases with Re > 2600) has been 
recalculated for this study with n, = 91, n, = 226 and 6t = 0.04 and it has been 
integrated out to  t = 6000, at which time the fi oscillation, whilst still being damped, 
has reached neither a steady state nor a periodic flow. 

5. The unsteady flow 
5.1. The Eulerian picture 

Using the numerical technique described in Lopez (1990), solutions for the enclosed 
swirling cylinder flow have been sought outside the steady regime. For H/R = 2.5 the 
following observations were made : 

(i) At Re = 2650 the impulsively started flow is oscillatory with frequency fl and 
very weakly damped. The long-term solution may or may not be purely periodic. 
When the time average of one period of the oscillatory solution was taken as the 
initial condition the flow was found to approach a steady solution. 

(ii) For 2650 <Re < 2675 impulsively started flows approach a periodic solution 
with frequency f,. 
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FICXJRE 5. Power spectra of the axial velocity at r = 0, z = i H  for H / R  = 2.5 and Re as indicated. 
The spectra have been taken over the time interval 6300 < 1 < 8922 using 216 samples (n, = 91, 
n, = 226 and St = 0.04). 

(iii) At Re = 2675 a stable steady solution close to the time average of the periodic 
solution also exists. This solution was found by taking as the initial condition the 
time average of the periodic flow. 

(iv) For 3500 <Re < 3600 the long-term solution to impulsively started flows 
contains fl and fi x 0.0357 oscillations. The frequencies do not appear to be 
commensurate. 

(v) For 3600 <Re < 4000 impulsively started flows approach purely periodic 
solutions with frequency f,. 

Power spectra of the axial velocity a t  the centre of the cylinder for 2700 <Re < 
4000 are shown in figure 5. 

The Eulerian picture of the fl periodic flows, such as the Re = 2675 case, consist 
of two 'bubbles' (closed regions defined by the separatrices of the instantaneous 
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stream function) coalescing and separating with frequency fi, as in the transients of 
the steady flows described above. This is shown in the instantaneous streamline 
patterns of figure 6 ( a ) .  For the f i  periodic flows occurring a t  higher Reynolds 
numbers, such as Re = 3600 (figure 6b) ,  the Eulerian picture consists of a ‘bubble’ 
moving from the top of the cylinder to  the bottom once each period. Relative to  a 
stationary observer, the closed instantaneous streamlines of the ‘bubble ’ disappear 
during its motion down the cylinder and are replaced by a travelling wave. 

5.2. Transverse intersections of the stable and unstable manifolds 
When the dynamical system (2) is time-dependent and its associated Poincark map 
has hyperbolic fixed points, the stable and unstable manifolds of these fixed points 
need no longer coincide but may intersect each other transversely (i.e. non- 
tangentially). The point of intersection belongs to two distinct invariant curves, the 
stable and unstable manifolds, and as such, will always belong to them. Intersection 
points map to intersection points but not to themselves (they are not fixed points). 
Hence, one such intersection implies infinitely many ; the intersection points must 
therefore accumulate near the fixed points. The points of intersection are transverse 
homoclinic or heteroclinic points, depending on whether the stable and unstable 
manifolds correspond to  the same (homoclinic) or different (heteroclinic) hyperbolic 
fixed points. 

Without an analytical description of the flow i t  is difficult to find the stable and 
unstable manifolds in the unsteady regime. However, good approximations of the 
unstable manifolds can be obtained both numerically and from flow visualization 
experiments. For example, a t  Re = 2765 there is an unstable manifold emerging from 
a hyperbolic fixed point on the axis which is delineated by a streakline released close 
to  the axis and near the top endwall. This is shown experimentally (Escudier 1984) 
in figure 7 ( b )  and numerically in figure 7 ( c ) .  Figure 7 ( a )  shows the unstable manifold 
for Re = 2700. The experiment, with Re estimated a t  2765, seems to correspond to a 
numerical solution with Re between 2700 and 2765. This small discrepancy in Re 
between experiment and computation can be partially explained by the 0.5 % 
uncertainty in the experimental estimate of the viscosity (Lopez 1990) and partially 
by the error in numerically resolving the rotating-endwall boundary layer with 
thickness of order Re-;. It must also be remembered that the streakline patterns are 
phase-dependent and i t  is difficult to match the phase of the experiment. 

Stable manifolds cannot be visualized experimentally, but remain important for a 
complete analysis of the flow kinematics. Fortunately, the stable manifolds can be 
computed numerically. This is achieved by constructing a ‘ time-reversed’ flow for 
one period of the computed flow by reversing the direction of the velocity field a t  
each time step and by reversing the order of the time steps. I n  essence, to compute 
the stable manifold of a hyperbolic fixed point on the axis, particles are released in 
the ‘ time-reversed ’ flow in the neighbourhood of the fixed point. 

The unstable manifolds of a hyperbolic fixed point off the axis are found by 
tracking a ‘blob’ of particles released simultaneously in its vicinity. The ‘blob’ is 
stretched along the unstable manifolds. The stable manifolds are found by using the 
‘ time-reversed ’ flow. 

5.3. Resonant bands, KAM tori and cantori 
I n  a steady flow, an elliptic fixed point is surrounded by a sequence of closed 
streamlines or invariant closed curves. Orbits on these invariant closed curves have 
an associated period T,, the time a particle on a particular curve takes to complete 
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FIGURE 7. Unsteady streaklines approximating Wu(P,) for (a) Re = 2700 and (c) Re = 2765, and ( b )  
a snapshot of an unsteady dyeline introduced at r = 0, z = H for Re estimated at 2765 (photograph 
of the experimental visualization is reproduced by kind permission from M. P. Escudier). 

one circuit. The behaviour of these orbits in the presence of a small amount of 
unsteadiness depends on whether the ratio of the period of the orbit to the period of 
the oscillation Ti/?, the rotation number, is rational or irrational. 

If the rotation number is rational then the Poincard-Birkhoff theorem (see Ottino 
1989 or Guckenheimer & Holmes 1986) states that these rational invariant curves, or 
resonant tori, will tend to break up into a collection of elliptic and hyperbolic periodic 
points. These nth-order periodic points are fixed points of Fn,  i.e. they map to 
themselves every n applications of the Poincard map. The hyperbolic points have 
associated stable and unstable manifolds which may intersect transversely leading to 
the formation of resonant bands or stochastic layers or heteroclinic tangles as the flow 
becomes unsteady. These thin layers of chaotic motion may be surrounded by 
invariant curves with irrational rotation numbers. For these curves, the Kolmogorov- 
Arnol’d-Moser theorem (the KAM theorem) states that if the rotation number is 
‘sufficiently irrational’ then ‘most’ of the closed invariant curves of the steady flow 
are preserved as the flow becomes unsteady (see Guckenheimer & Holmes 1986 for 
details). These preserved closed invariant curves are referred to as KAM tori and are 
barriers across which fluid cannot flow. So even in an unsteady flow with mixing due 
to transverse homoclinic and heteroclinic orbits, there may still be regions of trapped 
fluid bordered by KAM tori. Such regions of truly trapped fluid may bear little 
resemblance to the instantaneous streamline ‘bubbles ’. If the rotation number is 
neither rational nor ‘sufficiently irrational’ then as the flow becomes unsteady, an 
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invariant closed curve may break down into an invariant cantor set or cantorus 
(Percival 1979; see Guckenheimer & Holmes 1986, p. 304 for the conditions leading 
to the formation of a cantorus). Cantori provide only partial barriers to the flow. In  
most cases, flow between regions separated by cantori is very slow and it may take 
many periods before any distinction between KAM tori and cantori can be made. 

Although the existence of KAM tori, cantori and resonant bands has only been 
proven for small perturbations to the steady flow, numerical experiments, including 
the current investigation, suggest their existence in substantially unsteady flows. 

5.4. Chaotic advection in the central vortical core region 
Fixed points such as those in the core region of the steady flow (figure 3 b )  were also 
found in the f, periodic flow regime, namely a hyperbolic fixed point S,, two elliptic 
fixed points C, and C,, and two hyperbolic fixed points on the axis of symmetry P, 
and Pa. In  the f, periodic regime the core region consists of just two hyperbolic fixed 
points on the axis and a single elliptic fixed point. As examples of the f, and f, 
periodic flows, computed approximations of Wu(Pl) and Ws(P4) for Re = 2675 and 
3600 are shown in figures 8 (a ) ,  8(b ) ,  9 ( a )  and 9 ( b ) .  Distorted but topologically correct 
diagrams of all the stable and unstable manifolds in the core region are shown in 
figures 8 ( c )  and 9 ( c ) .  For clarity the two elliptic fixed points, C, and C,, are omitted 
in figure 8 ( c ) .  

We make the following observations for the f, periodic case, Re = 3600: 
(i) Wu(P,) and Ws(P4) intersect transversely (figure 9 )  and are folded and stretched 

to form long thin fingers. The fmgers of the unstable manifold are stretched towards 
the rotating endwall. The fingers of the stable manifold draw fluid from upstream 
into the ‘bubble ’ (as defined below). 

(ii) There is a region around the elliptic fixed point C, which the manifolds 
envelope but do not penetrate (figure 9 ) .  It appears that this region must be bordered 
by a KAM torus or cantorus. 

The core flow can be divided into regions by the choice of a convenient primary 
intersection point (Rom-Kedar & Wiggins 1990), such as the point p (figure 9c) .  Let 
the region enclosed by P,pP,P, (drawn with a thick line), be R ,  and let its 
complement be R,. The vortex breakdown bubble, defined as region R,, oscillates up 
and down the axis a small distance of the order of half its radius. This is in contrast 
to the instantaneous streamline ‘bubble ’ which travels the full length of the axis (see 
figure 6 b) .  

Intersection points of Wu(P,) and Ws(P,) are mapped to  other intersection points. 
For example, a is mapped to p and b is mapped to q. This means that the shaded 
region or lobe (Rom-Kedar & Wiggins 1990) L,, is mapped to F(L,, ,). The subscripts 
on L291 indicate that it is the lobe to be mapped from R, to R, upon the next 
application of the Poincard map. To preserve area (in (p, 2)-space, the lobe entering 
the bubble must have the same area as the one leaving, i.e. L,,, and L, , ,  have the 
same area. All images of a lobe under iterations of the map are of equal area, e.g. L2, 1, 
P(L,, ,), P2(L,,  1 ) ,  . . . are all of the same area. The accumulation of intersection points 
a t  the hyperbolic fixed points means that the lobes stretch to maintain their area, 
thus forming long thin fingers. This phenomenon is absent in steady flows since the 
stable and unstable manifolds do not intersect transversely. 

Information such as residence times and the extent of mixing for a given period 
can be deduced from the lobe intersections (Rom-Kedar & Wiggins 1990). For 
example, i t  can be deduced that the shaded region X, in figure 9 ( c ) ,  was outside the 
bubble four periods ago and will be outside again in another three. 
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FIGURE 8. (a )  A streakline upstream of Pl, giving an approximation of W"(P,) at Re = 2675 and 
&/R = 2.5 and ( b )  a streakline released in the ' time-reversed ' flow near P4, giving an approximation 
df W8(P4). (c) A schematic of W'(P,), Wu(S,)', W"(S,)", W8(P4), W8(S,)' and Ws(S,)" for a typical!, 
oscillation. 

(4 

t 

FIGURE 9. (a )  A streakline released upstream of P,, giving an approximation of W"(P,) for Re = 
3600 and H/R = 2.5 and ( b )  a streakline released in the 'time-reversed' flow near P4, giving an 
approximation of W8(P4). (c) A schematic of Wu(Pl) and W8(P4) for a typical fi oscillation. 
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Heteroclinic tangles with similar topologies have been studied in detail by Rom- 
Kedar et al. (1990). 

The kinematics of the f, periodic flows is more complicated. We make the following 
observations for Re = 2675: 

(i) One unstable manifold emerging from 8, (Wu(S,)' in figure 8) coils up around 
the elliptic fixed point C,, to subsequently run alongside Wu(Pl) (which i t  cannot 
intersect). 

(ii) The two unstable manifolds Wu(S,)' and Wu(Pl), intersect transversely with 
both WS(S1)I and Ws(P,). This results in folding and stretching of the two unstable 
manifolds at S ,  and P,, forming long fingers. These fingers are stretched both towards 
the rotating endwall and towards P,, where they follow Wu(Pl) and fit inside the new 
lobes forming from Wu(Pl) (figure 8). 

(iii) There are at least three regions in the vicinity of C, which the folds of the 
manifolds envelope but do not penetrate (figure 8). The central one 'rotates ' on the 
spot while the two satellite regions swap each period. The central region containing 
C, is apparently bordered by a KAM torus or cantorus (which is invariant under the 
Poincare' map). The satellites imply the existence of two elliptic periodic points of 
period two, i.e. these points map to themselves under two applications of the 
Poincare' map. Each is surrounded by a KAM torus (or cantorus) invariant under a 
double application of the Poincard map. At higher Re, e.g. Re = 2700 and 2765 (see 
figure 8), these islands occupy smaller regions of phase space. 

(iv) It appears that  Wu(8,)" and WS(S1)I1 intersect transversely, but only just; 
the lobes formed are of very small area. There is a large KAM torus or cantorus 
surrounding the elliptic fixed point C, (in figure 8). The region separating S, and the 
torus is very thin. 

The C, elliptic region shrinks as Re is increased. The elliptic fixed point becomes 
increasingly difficult to  locate. Can it disappear altogether ? The topological rule 
formulated in the Appendix implies that the elliptic fixed points must remain unless 
there is a corresponding change in the number of hyperbolic fixed points. This was 
not observed and it is concluded that the elliptic fixed point remains. 

The core flow has been divided into four regions R,-R, using the primary 
intersection points p , ,  p ,  and p ,  (figure 8 c ) .  A lobe about to move from one region to  
another and its location in the new region are shaded in the same pattern. For 
example, L,, , moves from inside R ,  to inside R,. Regions R,, R,  and R, each exchange 
fluid with each other every period. In  one period R, only exchanges fluid with R,. 
Most of R, is made up of an unmixed (or slowly mixing) sub-region bordered a KAM 
torus (or cantorus). This is in stark contrast to R,, which undergoes rapid mixing. 

5.5. The meridional circulation 
Thus far the discussion of the flow inside a cylinder driven by a rotating endwall has 
been limited to the central vortex core region which undergoes vortex breakdown. It 
is also of interest to examine the meridional circulation. 

I n  the steady flows, as shown schematically in figure 3, the meridional circulation 
results in a Poincard map consisting of an elliptic fixed point C, and a series of closed 
invariant orbits about C,. From the Poincark-Birkhoff theorem, some of these orbits 
(the rational orbits) are likely to break up into a series of elliptic and hyperbolic 
periodic points as the Reynolds number is increased and the flow becomes unsteady. 

At Re = 2765, one such resonant band has been found, consisting of four elliptic 
and four hyperbolic periodic points of order four, Ei-Et and H i - H t .  Each period, E i  
is mapped to Ei, E: is mapped to E! ,  E :  is mapped to E and E t  is mapped to  E :. 
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/ 

(a) 55 applications of the map (b) 67 applications of the map 

(c) 91 applications of the map ( d )  152 applications of the map 

FIGURE 10. Phase portraits revealing the resonance band in the meridional circulation for Re = 
2765 and H / R  = 2.5. A ‘blob’ is released in the neighbourhood of E :  and a montage is built up 
using its images from a number of applications of the Poincar6 map. 

The hyperbolic points behave similarly (see figure 10a). The stable and unstable 
manifolds of these hyperbolic periodic points intersect transversely, leading to the 
formation of a resonance band, as depicted in figure 10. 

A numerical estimate of the Poincark map is obtained by releasing a large number 
of particles uniformly over the whole of phase space and noting where they are 
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FIGURE 11. A schematic of the period-twelve resonance band about a period-four elliptic point 
found in the meridional circulation for Re = 2165, H / R  = 2.5. 

advected to after one period. This was done for the case Re = 2765 with n, = 91, 
n, = 226 and 6t = 0.04. A total of 2028 151 (901 x 2251) particles were tracked for one 
period (SOOSt), giving a reasonably smooth estimate of the Poincar6 map for this case. 
From this map, a scalar function can be defined which corresponds to the distance 
a particle is displaced after one iteration of the PoincarB map. The zeros of this 
function give the location of all the fixed points. Also, if this map is applied n times 
to all the original points, then the zeros of the distance function give not only the 
location of the fixed points, but also the location of the periodic points of order nlm, 
where m and n / m  are integers. 

The phase portraits depicting the resonance band in figure 10 were obtained by 
locating the periodic points of order four using the above technique and releasing a 
dense ‘blob ’ of 3600 particles in the neighbourhood of one of these elliptic periodic 
points. The portraits in figure 10 are montages of the image of this ‘blob’ after 
successive applications of the map. 

Closer examination of the elliptic regions surrounding E :-E t ,  reveals higher-order 
periodic points. About each of E:-Et, there exists a resonance band consisting of 
three elliptic and three hyperbolic periodic points of order twelve, E iz-E :z and 
Hiz-H:z. These are shown schematically in figure 11. Also shown in figure 11 are the 
unstable manifolds from Hiz-H&. On each four-fold application of the map, E i 2  is 
mapped to E t z ,  E:z is mapped to E;2 and E;z is mapped to E i2 and similarly for the 
points Hiz-H;z.  

Recall from figure 7(c) that there is an unstable manifold emanating from the 
hyperbolic fixed point on the axis, Wu(Pl) .  It takes about 100 periods for the fluid in 
the central core region to mix with the meridional circulation. The only way this 
mixing can occur is for the lobes formed by Wu(Pl)  to weave their way amongst the 
folds created by the heteroclinic tangles of the unstable manifolds from Hi-H;.  This 
is indicated in figure 10 (d) .  

6. Conclusions 

driven by a rotating endwall, with aspect ratio 2.5. 
A typical sequence of bifurcations has been studied for the flow inside a cylinder, 
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The steady regime consists of three topologies. A t  low Re, the flow consists of a 
simple swirling motion with a meridional circulation (one elliptic fixed point). At 
higher Re there are two separate bubbles on the axis (one elliptic fixed point for the 
meridional circulation and two hyperbolic fixed points and an elliptic fixed point for 
each bubble). Just prior to the onset of periodic flow, the bubbles coalesce (one 
elliptic fixed point for the meridional circulation, a hyperbolic fixed point with a 
double homoclinic connection enclosing two elliptic fixed points and two hyperbolic 
fixed points on the axis). 

The Eulerian picture of the low-Re end of the unsteady regime consists of two 
‘bubbles ’ (closed regions defined by the separatrices of the instantaneous streamline 
pattern) coalescing and separating a t  frequency fi. The fixed points of the Poincard 
map are the same as that of the steady flow just prior to the onset of unsteadiness. 
The transverse intersections of the stable and unstable manifolds lead to a 
complicated Lagrangian picture of the central core flow. At higher Reynolds 
numbers, the Eulerian picture has changed to that of a ‘bubble ’, or wave, travelling 
from one end of the cylinder to the other with frequency f2. This bifurcation is 
reflected in a change in the Lagrangian picture, where the two elliptic fixed points 
and the associated hyperbolic fixed point are replaced by a single elliptic fixed point. 

One of the most important consequences of this study is a clear understanding of 
the filling and emptying process of the vortex breakdown ‘ bubbles ’, in this particular 
geometry. The Eulerian picture of this process is inadequate and the process only 
becomes understandable when viewed in terms of the transverse intersections of the 
stable and unstable manifolds. Whilst flow visualization provides a very good 
representation of the unstable manifolds, it is only via numerical calculations that 
the stable manifolds can be determined in highly nonlinear flows with no known 
analytical solutions, such as vortex-breakdown swirling flows. 

Holmes’ (1984) prediction of the fluid motion in the vortex-breakdown bubble 
consisting of thin fingers originating upstream entering the bubble, where they 
circulate a t  least once, and similarly fluid originating inside the bubble exiting via 
thin fingers, is the type of motion found here. For the particular geometry studied 
here, this filling and emptying process is found in an unsteady axisymmetric flow, 
whereas Holmes used an asymmetric periodic perturbation of the steady axi- 
symmetric vortex-breakdown flow to explain the filling and emptying process. 

This study has been a good example of the application of Hamiltonian dynamical 
systems theory in the interpretation of the complicated behaviour observed in a very 
unsteady vortical flow at moderate Reynolds numbers, albeit in a simple geometry. 

Appendix 

described by 

where L is a linear operator (two-dimensional matrix). For an area- and orientation- 
preserving map det (L) = 1. If -2 < trace (L) < 2, the fixed point x, is Liapunov 
stable and called elliptic. If trace (L) = k 2, it is degenerate and parabolic. Otherwise 
it is unstable and hyperbolic. 

A zero point of the velocity field (i.e. where the velocity is zero) can be classified 
by the type of critical point it generates in the instantaneous streamline pattern 
(Perry & Fairlie 1974). Recall that the streamlines are the set of curves tangent to 
the velocity field. There is a unique streamline passing through each point in the field 

In the neighbourhood of a fixed point x,, the Poincard map X H F ( X )  can be 

F ( x )  - xo = L(x-x,) + O(IX- x,12), 
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Poincare index = + 1 

Poincare index = - 1 
w 

P 9 

// 4 Saddles 

*7 

&= 
*L# 

+9= 
FIGURE 12. Classification of critical points on the ( p ,  4)-chart. 

except at  the zero points where the direction of the velocity is indeterminate. Rules 
which relate the number of saddles and centres can be formulated for two- 
dimensional flows using the Poincard-Bendixson theorem (Davey 1961 ; Hunt et al. 
1978). 

The fixed points of the Poincard map x ~ F ( x ) ,  are the zero points of the vector 
field F ( x )  - x. There is a system of curves analogous to streamlines tangent to the 
vector field F ( x )  - x. A fixed point of the map results in a critical point in the system 
of tangent curves. In the vicinity of a fixed point x,, 

F ( x )  - x = (L- I) (x-x,) + O(Ix -xo12), 

where I is the identity operator. The critical point corresponding to x, can be 
classified by the trace and determinant of L- I. Let 

p = -trace(L-I) = -trace(L)+2, 

and q =  det(L-I) =det(L)-trace(L)+l.  

The critical points can be classified using a (p,q)-chart (figure 12) following the 
scheme of Perry & Fairlie (1974). The important conclusions are: 

(i) Critical points for area- and orientation-preserving maps must lie on the line 
Q = P. 

(ii) All elliptic fixed points correspond to foci. 
(iii) Hyperbolic fixed points with trace ( L )  > 2 correspond to saddles. 
(iv) Hyperbolic fixed points with trace ( L )  < -2 corresponds to nodes. 

Note that the arrows in figure 12 indicate the direction of the vector field F ( x ) - x  
and not necessarily the stability of the fixed point. Hyperbolic fixed points with trace 
(L) < - 2 are a case in point. 

In  canonical coordinates (i.e. those which transform L to Jordan form) a 
hyperbolic fixed point corresponds to stretching in one eigen-direction and 
compression in the other. In the case trace ( L )  < -2 (corresponding to nodes) there 
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FIQURE 13. The curves tangent to the vector field F(x)  -x, in the vicinity of an 
elliptic fixed point (node). 

is a rotation of R in addition to the stretching and compression. A particle released 
on one stable (unstable) manifold branch oscillates between both branches as it 
approaches (leaves) the fixed point. Hyperbolic fixed points of this kind cannot occur 
on the axis of an axisymmetric flow since the fixed point is missing one branch. 
Therefore, all fixed points on the axis must correspond to saddle points. 

A heuristic derivation of a rule relating the number of elliptic and hyperbolic fixed 
points is possible using a Poincard index approach (Davey 1961 ; Hunt et al. 1978). 
Figure 13 shows the system of curves tangent to F ( x )  - x  in the vicinity of an elliptic 
fixed point x, (node). A circuit 5! which contains the node is also shown. At each point 
x on C define O(x) to be the angle of deviation of the vector F ( x ) - x  from the 
horizontal, measured positive in the anticlockwise direction. Let At9 for C be the 
change in 6 for an anticlockwise traverse of C. The Poincare' index of C is defined as 
8 8 / 2 ~ .  It can be seen that the index for any simple closed circuit containing the node 
will be + 1 .  On the ( p ,  q)-chart the index of a critical point is + 1 if q > 0 and - 1 if 
q < 0 (figure 12). The index of a circuit containing no critical points is zero. In general 
the index of a simple closed circuit is the sum of the indices of the critical points 
contained in the circuit. The Poincard-Bendixson theory can be extended to non- 
planar geometries (Davey 1961). 

The Poincar6 index of a circuit close to the wall and the axis of symmetry of the 
swirling cylinder flow can be deduced from the behaviour of the vector field F(x)  - x 
near the wall and axis. This can be used to derive a rule for the number of elliptic and 
hyperbolic fixed points off the wall and axis without knowing any details about the 
interior flow. 

Let it be assumed that no stable or unstable manifolds emerge from the parabolic 
fixed points on the no-slip boundaries. Consider the circuit C ,  close to the walls and 
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A 

B 

FIQURE 14. Schematic of the curves tangent to the vector field F ( x ) - x  close to the walls and 
axis. Points A and B are saddle points corresponding to hyperbolic fixed points on the axis. 

axis, shown in figure 14. Irrespective of what lies inside circuit C, its Poincare' index 
PI, can be shown to be 

where C, is the number of saddles (corresponding to hyperbolic fixed points) on the 
axis. The sum of the PoincarQ indices of the critical points inside C must add to PI, : 

PI, = 1 ++CA, (A 1) 

PI, = z,-z,++z,-, (A 2) 

where Z E  is the number of foci (elliptic fixed points), C,+ is the number of saddles 
(hyperbolic fixed points with trace (L) > 2) and 2,- is the number of nodes 
(hyperbolic fixed points with trace (L) < -2) .  Equating (A 1) and (A 2) gives the 
desired rule : 

C,-C,++C,- = 1+$C,. 
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